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We study the Liouville equation in the domain of small deviations from 
absolute equilibrium. The solution is expressed in terms of amplitudes of 
n-body additive functions which are orthogonal with respect to the Gibbs 
weight factor. In the memory operator approach the memory operators are 
formally exact continued fractions. We show that with the isolation in the 
Liouville operator of a one-body additive operator Lo, any memory operator 
can be written alternatively as an exact infinite series, each term of which 
can be calculated exactly. This yields improvements of the dressed particle 
approximation. We discuss the choice of L0, which is in general time de- 
pendent. The theory is developed both for smooth potentials and for hard 
spheres, where we use pseudo-Liouville operators. The theory can be 
formulated in an equivalent manner by introducing modified cumulant 
distributions, which are closely related to the amplitudes. The modified 
cumutants have the same spatial asymptotic properties as ordinary cumu- 
lants, but have superior short-time and small-distance behavior. 

KEY WORDS : Liouville equation; cumulants; memory function; hierarchy 
equations. 

1. INTRODUCTION 

In  the  p r e sen t  p a p e r  we  s tudy  the  f o r m a l  s t ruc tu re  o f  c lass ical  m a n y - b o d y  

theory .  O u r  c o n s i d e r a t i o n s  a re  l imi ted  to  the  l inear  r e sponse  d o m a i n ,  whe re  

the re  a r e  smal l  a m p l i t u d e  d i s tu rbances  a b o u t  an  abso lu t e  e q u i l i b r i u m  state.  

T h e  ob j ec t  is to  de r ive  l inea r i zed  k ine t i c  e q u a t i o n s  fo r  t i m e - d e p e n d e n t  r e d u c e d  

d i s t r i bu t i on  f u n c t i o n s  a n d  fo r  t i m e - d e p e n d e n t  c o r r e l a t i o n  func t ions .  T h e  

a p p r o a c h  is one  i n t r o d u c e d  ea r l i e r  (Ref .  1 ; he rea f t e r  I). Boley  (2~ has  ana lyzed  

the  s t ruc tu re  o f  this  t h e o r y  in  de ta i l  a n d  has  m a d e  a n u m b e r  o f  s impl i f ica t ions  

a n d  t echn ica l  i m p r o v e m e n t s .  H e  has  a l so  s h o w n  tha t  the  f o r m u l a t i o n  is 
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closely related to the Green's function approach of Mazenko. (3) We will 
make some further simplifications here. Using a generalization of the idea 
of "dressed" particle, (4~ the relationship tO the general theory of Green's 
functions as well as to numerous other studies of time-dependent correlation 
functions becomes particularly clear. The formulas needed for explicit 
computations for smooth potentials will be written down explicitly. 

We will do one further thing in this paper. We set down the theory for 
the case of hard spheres. In that case we deal with pseudo-Liouville operators, 
and the hierarchy for distribution functions takes a special form. (5~ The 
remarkable feature of the hard-sphere case from the point of view of the 
general theory is that the "n"-body additive approximation for hard spheres 
corresponds to the "n + 1" approximation for smooth, strong, short-range 
potentials. The physical reason is that the duration of collisions becomes 
negligible. For smooth potentials the one-body additive approximation yields 
a singlet kinetic equation that is a modified Vlasov equation with the direct 
correlation function replacing the bare potential. It is well known that this is 
an improvement both at short times and at small distances over the usual 
Vlasov equation. The latter is derived by neglecting the doublet cumulant in 
the usual BBGKY hierarchy. ~6~ In addition the equation remains meaningful 
(even if inaccurate) for strong, short-range potentials. If the one-body additive 
approximation is applied to the hard-core case, using a pseudo-Liouville 
equation, one obtains a modification of the Boltzmann-Enskog equation 
with superior short-time behavior. This equation was derived by Lebowitz 
e t  al . ,  (7) who emphasized very clearly the distinction between the smooth 
potential and hard-core case. The same equation was derived by Mazenko 
from his general formalism and the solution of the equation was studied by 
Mazenko e t  al.  (8~ Sykes (9) has shown explicitly that the long-time hydro- 
dynamic behavior implicit in the Boltzmann equation is not destroyed by the 
short-time modification. 

The significant point is that for smooth, strong potentials the irreversible 
velocity relaxation of the Boltzmann equation can only be obtained by going 
to the two-body additive approximation and by eliminating the doublet 
function. This is of course much more complicated than the direct use of the 
one-body additive approximation together with the pseudo-Liouville operator. 

In our general approach the next meaningful level of approximation is 
the dressed particle approximation, which may be thought of roughly as 
being intermediate between the one-body and two-body additive approxima- 
tions. It involves the notion of a one-body additive operator and leads to an 
explicit expression for the memory kernel in the singlet equation. For smooth 
potentials the structure of the memory kernel is similar to that of Balescu for 
plasmas. (6~ However, again there is the characteristic improvement for short 
times and small distances for the time correlation approach as compared with 
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the usual cumulant approach to the BBGKY hierarchy. Of course, the ordinary 
Balescu equation is significant because it gives a description of large-distance 
phenomena, i.e., the screening of the Coulomb collisions at a Debye 
length. 

Ernst and Dorfman (1~ have used the pseudo-Liouville operator with the 
ordinary BBGKY hierarchy of distribution functions. Approximations similar 
to those of Balescu and Ichikawa (6~ in plasma physics are made. The triplet 
cumulant is neglected and the direct binary interaction is treated by iteration. 
The theory then describes long-time tails in correlation functions and non- 
analytic contributions to the hydrodynamic equations. These are remarkable 
results obtained in a very simple way. 

It is then quite natural to apply the dressed particle approximation to the 
hard-sphere problem, using a pseudo-Liouville operator and the time correla- 
tion formalism. One expects to find a short-time and small-distance improve- 
ment of the Ernst-Dorfman theory analogous to what occurred for smooth 
potentials. We carry out such a calculation in Section 4. 

The two-body additive approximation for the hard-sphere case can be 
written down easily and corresponds to the three-body additive approxima- 
tion for smooth, strong, short-range potentials. Furthermore, it is a trivial 
matter to go a step further, and to write the dressed particle approximation 
to the two-body memory function. The two-body additive approximation is 
set down in Section 3 and the dressed particle memory function in Sec- 
tion 4. 

The basic ideas of the theory are presented in an elementary way in 
Section 3. The deviation of the N-body distribution from equilibrium is 
written as q~FN(pl,--., qtr t), where �9 is the Gibbs equilibrium distribution. 
(Actually, as emphasized by Mazenko and by Boley, a grand canonical 
formulation is more convenient, and will be used here.) The phase space is 
supplied with a weight function q~. The construction starts with the set of 
one-body additive functions T(1) and an associated projection operator t'1. It 
is augmented by a set of two-body additive functions made orthogonal to the 
one-body functions, denoted by T(12), and an associated projection operator 
P2. It continues with three-body additive functions orthogonal to the two-body 
functions, denoted by T(123), and so forth. Then the most elementary pro- 
cedure is to expand Fr in terms of amplitudes An for these functions and to 
write the Liouville equation in the equivalent form of coupled equations for 
the amplitudes. The n-body additive approximation corresponds to the obvious 
procedure of neglecting all amplitudes whose index is greater than n. 

There are, however, two nontrivial points. First of all there is no division 
of the Liouville operator into noninteracting and interacting parts. Only the 
matrix elements of the total Liouville operator between elements of the 
function space enter into the theory. For smooth potentials there is an identity 
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(used in the variational formulation of Refs. 11 ; hereafter II and III) that these 
matrix elements are equal to the equilibrium average of the Poisson bracket 
of the two functions. This establishes immediately that the theory is in 
renormalized form with static correlation functions replacing bare potentials. 
Second, the time correlation functions constructed as matrix elements of the 
evolution operator e-Lt with the basis functions are the same as Mazenko's 
correlation functions. They have the same large-separation behavior as 
ordinary time-dependent cumulant distribution functions. Since isolation of 
appropriate asymptotic behavior is the chief reason for introducing cumulants, 
the theory may be thought of in terms of the introduction of a new type of 
cumulant with superior short-time and small-distance behavior. The definition 
is almost forced on us by the requirement of orthogonalization with the Gibbs 
weight factor. 

In Section 2 we express the theory in an abstract algebraic form, using 
projection operators, and find the continued fraction form for memory 
operators/2~ In addition we use the notion of a one-body additive operator 
to write a formal exact expression for the residual operator _~r  belonging 
to the n-body additive approximation (different from the residual infinite 
continued fraction). Here we encounter a separation of the Liouville operator 
into an "unperturbed" one-body additive part L0 and a perturbed part L1. 
So the question arises as to how to choose Lo and what to do about evaluating 
the residual ~ , , .  Existing theories differ in treatments of these points. 

The primitive dressed particle theory stops at the one-body additive level, 
and keeps only the first term in the expression for -~ql. For both smooth 
potentials and hard spheres L0 is chosen by the condition 

P1LoP1 = P1LP1 

The best choice of Lo is, however, that suggested by the general theory of 
Green's functions, ~2~ viz., 

P1LoP1 = P1LP1 + .~ln (1) 

Then, one-body excitations propagate in a "finally dressed" way. Since ~r n 
is evaluated to some approximation using Lo, this leads to a difficult nonlinear 
self-consistent problem. On the other hand, comparison of the two-body 
additive approximation for smooth potentials with the one-body additive 
theory for hard spheres points to a simple recipe. At the n-body additive 
approximation compute 21~11 neglecting )1~... This leads to a revised /~11, 
which is the dressed particle improvement of the n-body additive approxima- 
tion. This can also be written in a fully renormalized form. 

In the body of the text and in the appendices we give relatively complete 
and explicit expressions for the static correlation functions, projection opera- 
tors, and matrix elements of the Liouville operators. 
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2. A L G E B R A I C  A S P E C T S  OF THE G E N E R A L  T H E O R Y  

We wish to solve the Liouville equation 2 

+ L  (pl .... , q N ; t ) = 0  (2) 

given the initial condition FN(t = O) = FN ~ Here FN * is the deviation from 
absolute equilibrium. We use the time correlation point of view and introduce 
the evolution operator (~( t )=  e -Lt and the Laplace transform, i.e., the 
resolvent operator G(S) = (S + L) -1. Then FN(t) = e-LtFN ~ and fiN(S) = 
C(S)F  ~ 

(S + L)G(S) = 1 (3) 

where 1 is the identity operator in N-body space. 
Using a projection operator P and its complement Q, P + Q = 1, the 

basic formulas are 

(S + PLP)PG + PLQ.  QG = P, (S + QLQ)QG + Q L P . P G  = Q (4) 

We refer to PGFN ~ and QGFN ~ as "amplitudes," and the concrete version of 
the theory is formulated in terms of amplitudes in Section 3. From these 
formulas, taking right-hand projections, we find 

(S + PLP + lffl)PGP = P, M = - P L Q ( S  + Q L Q ) - I Q L P  (5) 

Here M is the memory operator associated with P. In particular we first take 
P~ to be a projection operator onto one-body additive functions. Thus we 
have 

(S + P1LP~ + M~)PIGP~ = P~, )Q~ = - P I L Q I ( S  + Q~LQ~)-IQ~LP~ 
(6) 

Now introduce a sequence of projection operators P2, P3 .... with comple- 
ments such that Q2 is orthogonal to both P1 and P2, Q3 is orthogonal to 
P1 + P2 + P3, etc. Then let 

~cel = Q~LQ~, fYx = (S + QILQ~) -~ (7) 

MI~ = -P1LQI#IQ1LP~,  (S + ~1)c~ = 01 (8) 

Treat this in the same way, noting that (Q~Q2 = Q2, Q1 - Q2 = P2) 

P2~LP~P2 = P2Q~LQIP2 = P2LP2, P 2 ~ Q 2  = P2LQ2 (9) 

Then 

(S + P2LP2 - P2LQ2(S + Q2LQ2)-~Q2LP2}P2c~Pz = P2 (10) 

Hence, for the case that L connects only successive spaces (pairwise inter- 
actions), 

M ~  = -P1LP~{S + P~.LPz + lfflz~)- 1P~LP~ (11) 

We use the caret to denote time-dependent quantities and the tilde to denote Laplace 
transforms. 
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with )kTtz~ = -P~LQ2(S + QzLQz)-~QzLP~. We thus have a continued 
fraction generated by the recursion relation 

~t. .  =_ 1~.~ ' .  = -P.LI".+~{S + P.+ILI~.+~ + M.+I, .+~)P.+I~P.  (12) 

and 

{s + e .H' .  + ~..)~.GP. = e . .  (13) 

This is a formally exact reformulation of the problem. <2) 
Now let L0 be a one-body additive operator. This notion will be defined 

more precisely later. The relevant property for the present argument is that 

PmLoP,~ = 0 for m # n (14) 

Since LoP~ belongs to P1, we have QIf(Lo)P1 = 0. From the identities 

(S + Q1Lo) -~ = (S + Lo)-~{1 + P~Lo(S + Q~Lo) -1} 

= {1 + (S + QILo)-~P1Lo)(S + Lo) -~ (15) 

we find 

QI(S + QILo) -1 = QI(S + Lo) -1 (16) 

In addition, with L = Lo + L~ and the definitions 

Go = (S + Lo) -1, il = [S + Q~(Lo + L~)] -~ (17) 

we have the identifies 

L = (S + Q1Lo)-~{1 - Q1Llil) = {1 - ~Q~L1}(S + Q~Lo) -~ (18) 

with the formal solution 

QIilQ1 = Q~[1 + GoQ~L~Q1]-~GoQ1 = Q1GoQ~[I + Q~L1Q~Go]-IQ~ 
(19) 

We therefore find the formally exact expressions for the first memory operator 

ff111 = -P1LQI[1 + GoQ1L~Q~]-~QaGoQILP~ 

= -PILQIGoQ~[1 + C, oQ~L1Qa]-IQ1LP~ (20) 

This type of expression can be established at any level. For  example, for 
A~t22, we have Q2(S + Q2Lo) -~ = Q2(S + Lo) -~, resting on the fact that 
Q2LoP1 = O, QzLoP2 = 0. With 

i2 = [S + Q2(Lo + L1)] -1 (21) 

we again have 

Q212Q2 = Q2GoQ2{1 - Q2L~Q212}Q2 = [1 -I2Q2L~Q2]Q2GoQ2 (22) 

and 

M22 = -P2LQ2[1 + GoQ~LIQ~]-~GoQ~LP~ 

= -P~LQ~do[ 1 + QzL~ Q2do] -1Q~LPz (23) 
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The analogous expression holds for any value of n, viz. 

M,~,~ = -P,~LQ,~[1 + GoQ,~L1Q,~]-IGoQ,~LP, 

= -P,~LQ,~Go[1 + Q,LIQ,~Go]-IQ,~LP,~ (24) 

A number of existing theories fit naturally into this framework. The one- 
body additive theory entirely neglects 3~r11. It leads to a modified Vlasov 
equation because the term PxLP1 involves the direct correlation function 
rather than the bare potential (cf. Section 4). The Forster-Martin weak 
coupling theory (13) uses only the first term of the geometric series for &tzl, 
namely _~rll ~ -PILP2GoP2LP~, and takes L0 equal to the free-particle 
streaming one-body additive operator. The work of the Brussels school(~ 
involves a diagrammatic analysis of the higher order terms of the series. The 
primitive dressed particle theory c4~ also uses only the first term for )~r But 
Lo is chosen to be a one-body additive extension of the relation P1LoPI = 
P~LP~. As a result the theory can be written in renormalized form. 

The two-body additive theory (1~ sets ~22 = 0, leading to an expression 
for .~r~ where close binary collisions in the presence of the medium are taken 
into account. It is more convenient to do this than to make a partial summa- 
tion of terms in the closed-form expression for kTr~l. When Lo is chosen in 
one of the two ways just discussed, the dressed particle theory appears as a 
further approximation to the two-body additive theory. This is of course 
no longer the case when more terms in the geometric series for )Ql~ are taken 
into account. It is also not the case when L0 is chosen in a different way. For 
example, the most attractive choice for Lo is as the one-body additive exten- 
sion based on Eq. (1). Then Go is a resolvent operator giving exact propaga- 
tion in the P1 space. It is of course dependent on 3~r~z, which in turn is 
evaluated using the series involving L0. This then gives rise to a difficult 
self-consistent type problem. This procedure is precisely the one used in 
quantum field theory based on Green's functions. 

In classical liquid and plasma theory the use of clusters is physically 
compelling, at least in treatment of the small-distance aspects of the problem. 
Our algebraic reformulation shows that one can proceed to an n-body additive 
approximation with the continued fraction. This takes into account elementary 
collisions of various types occurring in a medium and does not involve any 
division of the Liouville operator. However, one has the same type of 
expression for the residual memory operator ~ , , .  Again one is tempted to 
use the "exact" L0, leading to a self-consistent problem. But it is more 
practical to use an Lo based on the )l~r~ computed in the n-body additive 
approximation, thus avoiding the self-consistency problem. At the ~22 this 
procedure is closely related to Mazenko's main working approximation. We 
will discuss this point in more detail later. 
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As an illustration we describe a cruder theory. Let Lo D be the primitive 
dressed Lo chosen from P1LoDP~. Then an improved Lo can be chosen as 

1 
P1LoP1 = P1LP1 - P1LP2 S + Lo D P2LP1 (25) 

This expression on the right-hand side has been explicitly evaluated. (4) The 
improved Lo is no longer anti-Hermitian, as was Lo D. It therefore has an 
eigenvalue spectrum describing velocity relaxation (as well as Landau 
damping). So the improved ~ t ~  ~ - P ~ L Q I ( S  + Go)QxLP~ has a different 
behavior in the hydrodynamic regime. 

It should be noted that all of  the results of this section hold when L is a 
pseudo-Liouville operator. 

. FUNCTION SPACE A N D  PROJECTION OPERATORS 

We now make the formal scheme more concrete. We have the one-body 

Using 

(T(1) I T(2)) = (N(12)) - (N(1))(N(2))  + 8(1 - 2)(N(1)) 

= {p=(xlx2) - po2}r + 3(1 - 2)po (31) 

where p2(x~x2) is the static pair distribution, we have the well-known result (~5~ 

(1]Z~12) = [3(1 - 2)/0or - C(xx - xs) (32) 

additive functions 
N 

N(1) = ~ 8(p~ - Pl) 8(q. - xl) (26) 
0:=1  

and the deviations from equilibrium 

T(1) -- 3N(1) = N(1) - (N(1)), (N(1))  = por~(pl) =- Po6~ (27) 

where 6(Pl) is a Maxwellian distribution. Actually, one should use the grand 
ensemble for defining averages. We use the inner product 

( A  [ B )  = f �9 dI" A*B  (28) 

However, in the spatial form with which we work, A and B are real functions. 
The projection operator for the functions T(1) is written as 

P~ = I T ( i ) ) ( T ( i ) I T ( i ' ) ) - ~ ( T ( i ' ) I  - I T ( i ) ) ( i [ z i I i ' ) ( T ( i ' )  (29) 

The bars over variables mean integrations. The inverse Z1 is defined by the 
equations 

(T(1)IT(2))(2]Z~13> = 8(1 - 3) 
(30) 

(llZ~I~2)<T(TZ)tZdT(3)) = 8(1 -- 3) 
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Here C(x)  is the direct correlation function, defined by the integral equation 

h(x) = C(x) + Po( C(Ix x ' l )h(x ' )  dx '  
d (33) 

h(x)  = [p2(x)/po 2] - 1 

The next step is to introduce two-body additive functions 

N(12) = ~ 3(p~ - p~) 3(p B - P2) 3(q~ - xl) 3(qB - x2) (34) 

and deviations 3N(12) = N(12) - (N(12)). In order to define P2, we want 
the two-body functions that are orthogonal to the one-body additive func- 
tions. Let 

T(12) = 3N(12) - A(123) 3N(3) (35) 

Since T(12) is defined in terms of deviations, its equilibrium average is zero. 
To fix A(123) we require, for all values ofpa ,  x3, 

(T(12)I3N(3)) = 0 (36) 

Hence 

A(123) = (3N(12)13N(7~))<7,iZ1 [3) 

= ((N(127J,)) - (N(12))(N(7~))}(741ZI]3 ~ 

+ (U(12)){(llZ~13) + ( 2 l z d 3 )  } (37) 

Explicitly, 

A(123) = K(xax2xs)(~gp2 + [p2(x,x2)/po][(~23(1 - 3) + ~13(2 - 3)] (38) 

where 

K(x lx2xa)  = [p3(xlx2xa)/po] - p2(xix2) - -  f p3(xlx2x4)C(x4 X3) dx4 

o (x x )poj c ( x ,  - x3) dx, + 

- p2(xlx2)[C(xa - x l )  + C(xo - x2)] (39) 

Before going on to the three-body space, we first find the four-point 
static correlation function (T(12) [ T(34)) and the two-body projection operator 
P2. The four-point static correlation has a simple structure. We write it as the 
sum of three parts A, B, and C, with different momentum dependences: 

(T(lZ)IT(34))A = ,~l(~2p2(x~, x2)[3(3 - 1)3(4 - 2) + 8(3 - 2)3(4 - 1)] (40) 

<T(12)IT(34))B = r162162 - 1) + 3(4 - 2)] 

[ -m(x~x~)p~(xax,)] 
x p3(xlx~.x3) -~o J + 3 ~ 4 (41) 

(T(12)[T(34))o = ,~2r (42) 
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where 5~(xlx2xax4) is given in Appendix A as Eq. (A.7). The A sector is of 
order po 2, the B sector is of order po 3, and the C sector is of order po 4. The 
four-point static correlation function is all that we need for the calculation 
of the IBA dressed particle memory function. 

The next step is to introduce a set of three-body additive functions 
orthogonal to N(1) and T(12). Thus 

T(123) = 8N(123) - A(1231755)T(7~3) - A(12317~ ) 8N(7~) (43) 

Here 

and 

A(12314 ) = (SN123)IbN(3))(SN(3)ISN(4))-I (44) 

where 

pa(xlx2xa) 1 (50) 
F(x l  - x llx  - x3) = p (xlx )p (xlx3) po 

and P(12) is a permutation operator. 
Z2 has A, B, C parts with momentum structure like the parts of 

(T(12) IT(34)). We have 

(121z2134) A = 3(3 - 1)3(4 - 2) + 3(3 - 2)8(4 - 1) 
402(x , x2)~ 1~= (51) 

(121Z2134)B = [1 + P(12)][1 + P(34)]B(xx - xa[[x~ -- x3)[8(1 - 4)/~11 
(52) 

where B obeys the integral equation 

B(Y2I]Ys) = -(1/4)F(Y2Ilys)  + ( F(ysHya)p2(Y3)B(Ya[IYs) dy3 (53) 
d 

A(123145) = (SN(123) IT(~7) ) (T(~T)IT(45) )  -1 (45) 

This requires a knowledge of  the two-body inverse that occurs in the projector 

P~ = lT( i2 ) ) (T( i2 ) IT(37~) ) -  l(T(37~)] (46) 

(121Zz134) = (Z(12)lZ(34)) -1 (47) 

It obeys the equation 

<121Z~134><ZO~)lZ(56)) = �89 - 03(6 - 2) + 3(5 - 2)8(6 - 1)] (48) 

The two-body projection operator is determined from the equation 

<121Z=178) + [1 + e(12)]F(xl  - x~llxl - ~3)~3p~(x~)<311Z=178) 

+ (~3(~ ~(x~x2~3~a) (341z2178) 
2p2(xlx2) 

3(7 - 08(8 - 2) + 8(7 - 2)3(8 - 1) 
= 4p=(x,x2)cklcfi 2 (49) 
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The quantity B has the low-density behavior po- 1 for hard spheres. Finally, 

(121Z2134)c -- (x lx2 l  U l x a x , )  (54) 

The purely spatial function U obeys the integral equation 

<xlxd UIx~x~> + S e ( x ~ x ~ , )  <~z3x, l Vlx,x~> 
2p2(xlxg,) 

+ 211 + P ( 1 2 ) I F ( x l  - xztlxa - ~3)p=(x,x~)<~3xdUIx~x.> 

= - S ~ ( x z x 2 x T x s )  _ [1 + P(375)1[1 + P(78)1 
4p~(x l x~) p~(xTxs) 

S f f x~x~x~ , )  B(x~ - Y~,llx~ - x~) 
x 2p2(xlx2) 

- 2  [1 + P(12) IF(x l  - x=llx, - ~z3)p=(x~)B0z~ - x ,  ll~3 - x , )  (55) 

Since 5 a is proportional to po 4, the quantity U has oo ~ ~ 1 behavior at low 
density. 

An expression for A(123145 ) and thus for T(123) can be obtained by 
combining the above relations with the expression for (3N(123)IT(67)) given 
in Appendix A. 

4. A M P L I T U D E S  A N D  D I S T R I B U T I O N  F U N C T I O N S  

We now develop the theory along the elementary line of thought of I, 
i.e., from a "Schr6dinger" picture. We write the N-body distribution function 
PN( t ) as 

PN(t)  = IT(i))21(1; t) + IT(I2))22(i~; t) + IT(i23))23(i23; t))  + ... (56) 

with initial condition A~(t = O) = A ,  ~ 
The amplitudes AI(1 ; t), .42(12; t) .... have the properties 

(T(1)IT(i')F.41(i'; t) 

= ( T ( 1 ) I P I P N ( t ) )  = (Z(1) le-~tFNo 

= <Z(1) le-LqT(i ' )>&~ ') + <Z(1)le-LqZ(i '~ ' )>Ar ') + ... (57) 

<T(I2)IT( i '~ ' )> .4~( i '~ ' ;  t)  

= <T(12)IPN(t) )  

= (T(12) l e - "qT( i ' )>&~ ') + <T(12)le-LqT(i'~')>.4~.~ ') + ... (58) 
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Thus the amplitudes involve superpositions of correlation functions with 
weights depending on the initial distribution FN ~ The correlation functions 
<T(12)]e-UlT(l'2')) are just Mazenko's correlation functions. 

The theory is most easily expressed in terms of these amplitudes. We 
will use the notation 

(T(12)ILIT(34)> =- <121L134>, etc. (59) 

For  clarity we underline with a wiggle arguments that are not summed over. 
In that case,bars indicating summation are omitted. From the Laplace 
transform of the Liouville equation we have 

S(T(1)IT(I '))AI(I '  ) + (I  [L] I'>XI(I') + <lILIl'2'>X~(l'2' ) 

= <T(1)IT(L')>AI~ ') (60) 

<12]S + L[ l '2')Az(l '2') + <12IL [ 1'2'3').da(1'2'3') 

= < T ( 1 2 ) I T ( l ' a ' ) > & ~  ') - < 1 2 1 L l l ' > ~ l ( l '  ) (61) 

etc. Using the inverses, we have the explicit forms 

S.~1(1") + (T(I*)IT(1)>-I<I ILl 1'>.~(1') 

+ (T(I*)IT(1))-I(IILII '2')A=(I '2 ') = Ai~ *) (62) 

SX2(1"2") + (r( l*2*)l  T(12)>- 1( 12ILl 1'2'>-ff2(1'2') 

+ (T(I*2*)I T(12)>- 1<121L I 1'2'3'>•(1'2'Y) 

= A2~ *) - < Z ( l * 2 ~ ) l Z ( 1 2 ) > - l < 1 2 1 Z l l ' > . ~ l ( Y )  (63) 

We now introduce one-body operators Lo by the definition 

LoiN(l)> = [N(I ')XI'IRII> (64) 

i.e., operating on a one-body additive function, it produces a sum of one-body 
additive functions. In the two-body space its action is 

LoIN(1)N(2)) ----IN(I')N(2)>(I'IRII> + IN(1)N(2'))(2'IR[2) (65) 

with an obvious extension to the n-body space. In V we defined (4) such 
operators in a functional notation. This is not convenient for the hard-sphere 
case. We thus have the matrix elements 

<T(1)ILoIT(I')> = <T(1)IT(2)><21R II'> 

<T(lZ)[Lo[T(I'2')> = <T(12)[T(32')><3[R] 1'> 

+ <T(12)IT(l'3)>(3[R]2'> (66) 

etc. 
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We now write down the amplitude equations when we have made the 
separation L = Lo + L1. We have 

SAI(I*) + (IFIRI l ').~x(l') + (T(1)~)IT(1)) - I(IIL~I l ')Ax(l ') 

+ (Z(l*)[ Z(1)) - l(lltl 1'2')~(1'2') = AI~ * )  (67) 

S.42(1"2") + (I*IRII '>X2(I '2 *) + (2*IRil '~A2(I'I*) 

+ <ZO.?2*)lT(12)>-l<121tll 
+ (T(I*2Z)IT(12)>- 1(121LI 1'2'3').~3(1'2'3') 
= Aa~ *) - (Z(1/*2*)lZ(12))-~(121L13~.~(3) (68) 

The n-body additive approximation effects a truncation to a closed set of 
equations by neglecting the amplitude -~,+z entirely. The dressed particle 
correction to the one-body additive theory calculates A2 by neglecting the 
term involving (12IL~ j 1'2') after neglecting -~3- The equation for -~2 then 
involves the sum of operators that act separately on the two arguments of 
A2(1'2'). This is precisely what happens in the ordinary BBGKY hierarchy 
when it is written in terms of cumulant distribution functions. ~8~ Here it is a 
consequence of  the introduction of a one-body additive part of L. In both 
cases the doublet equation is explicitly soluble in the time domain in terms of 
the solution of the singlet equation. The -~2(1'2'; t) can be inserted into the 
equation for .4~(1"; t) to yield a Balescu-type singlet equation. 

In the primitive dressed particle approximation L0 is chosen so that 

<llZtl '  > = <llto]l'>, R(I*II '  ) = (T(I*)IT(i))-~(ilLll'~ (69) 

and 

( I*[LIII ' )  = 0 (70) 

To obtain the dressed particle correction to the two-body additive 
approximation, we write an equation for A3 and neglect the -~4 amplitude 
together with the term (T(l*2*3*)IT(123)) -1(123/L~/1'2'3').~3(1'2'3'). Again 
this is an explicitly soluble equation for -48(t), involving the R operators. At 
this level the R operator is chosen so that 

(11RI2),~1(2) -- <llZl2).~z(2) + (11LI1'2')/72(1'2') (71) 

where/72(1'2') is the two-body additive -~2(1'2') with A2~ ') set equal to 
zero. This procedure is more conveniently expressed in the projection 
formalism. 

We now discuss the relation of this approach to one involving ordinary 
singlet, doublet, etc., time distributions and ordinary cumulants. (6) These 
distributions (i.e., deviations from equilibrium) are defined as 

FI(1) = (~N(1)lP~(t)) 
P2(12) = (~N(12)lPz~(t)> (72) 

P3(123) = (3N(123)lffN(t)> 
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We thus have the connections 

_Pl(1) = (SN(1)ISN(I'))d~(I') 

P2(12) = (SN(12)]8(2ql ')5~(l ')  + (T(12)]T( l '2 ' ) ) . ,~2( l '2 ' )  (73) 

P,(123) = (SN(123)l~g(l ' )Sd~(l ' )  + <~N(]23)IT(V2')SdRV2') 
+ (T(123)1Z(l '2'3')Sd~(l '2'3') 

These equations terminate because 8N(12) is orthogonal to T(123), etc. We 
can invert the relations to find 

d~(1) = (SN(1) i 8N(l ' ))  - lP1(1') 

d2(12) = (T(12)IT(l '2 ' ) ) -  1[f2(1'2') - (8N(1'2')] 8N(3)5 
x (8N(3) 13N(4)) - 1 / ~ 1 ( 4 ) ]  

d3(123) -- (Z(123)l T(1'2'3')5 -l[P~(1'2'3') - (~N(1'2'391T(45)).~2(45) 
- (8N(1'2'3')18N(4)).~(4)] 

(74) 

For the usual distribution functions we have the time-dependent BBGKY 
hierarchy 

SPl(1) + (~N(1)]LF2~) = FI~ 

SP2(12) + (3N(i2)]LPN5 = F2~ (75) 

When written out in detail using 

~ p .  ~ ~V 
L = m 0q~ ~ 0q~ 0p~ (76) 

the hierarchy involves the bare potentials. 
To establish the meaning of our truncation schemes in the context of this 

hierarchy most directly, one can use the inversion relations [Eq. (74)]. Thus 
the one-body additive approximation corresponds to taking the first equation 
of the hierarchy and to putting 

Pz(l'2') % (8N(1'2')18N(3))(bN(3)ISN(4)) - lP1(4) (77) 

In this form the bare potential occurs, and a use of the equilibrium hierarchy 
is required to establish a fully renormalized form. In higher approximations a 
similar procedure is followed. This was the point of view in I and IV. At the 
two-body additive level, we exhibited in IV (17) the self-contained equation for 
P2(12) involving/~(1) in inhomogeneous terms. 

The most effective treatment of the BBGKY hierarchy involves intro- 
duction of cumulants. These are needed to treat clearly the asymptotic 
properties of the distribution functions at large separations. When one 
rewrites the hierarchy in terms of cumulants, one-body additive operators 
similar to our (1 [R[ 1') appear naturally. This is the key to the treatments of 
Baleseu (6,~) for plasmas and of Ernst and Dorfman C1~ and Pomeau (~6) for 
the hard-sphere chain. 
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Some characteristic features are already present at the one-body additive 
level. Neglect of the ordinary cumulant /3(12) gives the ordinary Vlasov 
equation, but there is already a difficulty with the initial conditions. The 
assumption involves putting/3(12) equal to zero at all times including at t = 0. 
But the initial preparation in a light scattering or external field experiment 
involves a microscopic preparation of the Liouville distribution in which, for 
example, A1 ~ # 0, A2 ~ = Aa ~ . . . . .  0. The one-body additive approxima- 
tion requires a/3(12) that is nonzero at t = 0 to fit the initial conditions. This 
relation between/3(12) and FI(1) is taken to be the same for all t as/~1(1) 
varies with time. At large spatial separations 13(12) vanishes. So the truncation 
improves the short-time, short-distance behavior without violating the long- 
time, large-separation behavior. This gives rise to the modified Vlasov 
equation. <15> 

In the theory that works with the usual hierarchy one frequently 
argues that a suitable initial condition implying "prior  chaos" is to take 
/3(12, t = 0) = 0. Apart from the lack of clarity of the meaning of this condi- 
tion in operational terms, one obtains the Vlasov kernel in place of the 
modified term involving the direct correlation function in the singlet equation. 
Thus the short-distance as well as short-time behavior is defective. It should be 
noted that this trouble persists at higher levels of approximation. Thus if 
one keeps two equations in the BBGKY chain and takes/3(123, t) = 0, one 
again violates a microscopic preparation since for such a preparation 
/3(123, t = 0) # 0 even if only Az ~ # O. One obtains a doublet equation 
which is badly behaved at small particle separations for strong short-range 
potentials. After solving for the doublet cumulant and inserting it into the 
singlet equation we obtain a collision kernel. This does not correct the Vlasov 
mean field term. In addition the one-body additive part of the doublet 
operator involves the Vlasov operators, so that the kernel itself is defective 
at small times and distances. We conclude that the time correlation formula- 
tion is superior at all levels, and that there is a one to one correspondence 
between the two formulations. The differences are intrinsic, and the defects 
of the BBGKY treatments are not remedied by standard improved trunca- 
tions of the Kirkwood type. As was shown in IV, <~7~ the truncations needed 
in the usual hierarchy to get good short-time behavior (e.g., A3 = 0) are 
nonlocal and unnatural from the BBGKY point of view. However, we are 
not here arguing against the usual treatment for the study of large-distance 
and long-time behavior. 

In this connection it should be noted that A2(12) has the same spatial 
asymptotic behavior as the cumulant /3(12) (i.e., goes to zero for large 
separations). So the amplitude method may be thought of as the intro- 
duction of a new type of cumulant, better suited to the treatment of small 
distances. 
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5. K INETIC  E Q U A T I O N S  

Equations based on the time correlation point of view take somewhat 
different forms for smooth potentials and for hard cores. For  smooth 
potentials we find forms in which the bare potential is eliminated. This is 
immediate by noting the identity, <11) for any two phase-space functions, 

f f dVA*(pl,..., qu)LB(.pz,..., qu) = KT �9 dr  = \'~p~ 8q= 8q, Fp~ 

(78) 

Thus it is not advisable to split L into a free streaming part Lo ~ and an inter- 
action term. The matrix elements of L between the basic functions of phase 
space are simpler, and only involve static correlation functions (cf. Appendix 
B). This makes it unnecessary to use the equilibrium hierarchy explicitly. 
Thus the one-body additive approximation uses 

<1,ILl1) , p~* 8 = P o r  ) m a(1  - 1.*) 

(79) 

, pl* a <1.[&[2> (l*lL[i')(l'lZd2) = po~(p~ ) m axe* 

We find the well-known singlet equation (~5> from 

+ ( l*[)~q~[i ' ) (T ' l / l [2)ff l ( ] )  = F~ ~ (80) 

when we neglect the memory function 3r 
For  hard cores we use the separation L_ = Lo ~ - LE ), where L~ ) is a 

pseudo-Liouville operator (cf. Appendix C). The contribution of Lo ~ to the 
singlet is 

<1" Ito~ 
_ p~* a_~l(l*) p~(x~%)pl aP~(i) 

m 8x1" + Po m axl ~(Pl*) 

(v 
- po p ~ * r  C(x~* - ~=) ( 8 1 )  

m 8x~ 

The second term cancels against part of the interaction, when one uses 
the equilibrium hierarchy. To calculate the interaction, we note that 

-<L*IL~'IX><~IZII~>-~(~) 
= [(N3(1"2'3')) - (N( l * ) ) (N(2 '3 ' ) ) ] (2 '3 ' [  W~-~] I ' ) ( I ' [Zd2)P~(2) 

+ 2(N2(l*3')><L*3'I W~, l 1')(1' tZ112)fix(2) (82) 
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The one-body inverse has a delta-function part and a purely spatial part 
involving the direct correlation function. Since f (2'3'] W21[l')dp~' = 0, the 
direct-correlation-function part does not contribute and (l[Z~[2)ff~(2) may 
be replaced by ffl(1)/poq~(p~). The first term involves the three-point static 

d 'd  ' ' ' 2'3' function and the quantity (x2x31gll') = f f  r )r )< I 
This quantity is given in Appendix C. We then find for the first term 

&(P~,I *) mP/ f p4x~*,poX/, x;) a(lxlal - ~)21a dx; ff~(l') (83) 

It combines with the free streaming term and the two terms are eliminated 
using the equilibrium hierarchy equation 

c~p2(xlxa) j - ~)21zpa(x~x2xs) = p2(cr)~-~x ~ 0(Ix~3[ - ~) (84) 
0 x l  

The second term in Eq. (82) contains the Boltzmann-Enskog operator plus 
a term arising from the 0 functions (cf. Appendixes C and E). We find the 
LPS-Mazenko Cv,8~ equation 

PI* * 

x Ox----T - p~O)(l*l~[2)  p--~- + (I*i-)Q~i2> = F~~ *) (85) 

The memory function )Q~ will be evaluated in the dressed particle approxi- 
mation in the next section. The relation between the smooth-potential and 
bard-sphere cases is discussed by Blum and Lebowitz. (7) 

We now write down the explicit form of the equation for the two- 
particle amplitude -'t2 for the hard-sphere case. In Eq. (63) we need to 
evaluate (I*2*Iz~Ii2)(i21L I 1'2'). We use 

L~'IN(12)) = [1 + P(12.~.)llN(145)X45[ WY~12)+ 1N(34))(341Wff2112) (86) 

Furthermore, note that 

(1"2" l Wff~13)A(123).42(12) = [1 + P(12)](1"2"[ Ws 1) p2(x~x2) 4,(p~)_d~(12) 
. . . .  P0 

(87) 
This gives 

S + Pz* 0 m Oxl* + --m (1"2 

~(1'2"1Ws - [1 + P(12)](1"2"] W~I]I) p2(xlx2) q~(p2)'~.42(12) 
k ~ Po ) 

- (1--2" 1K22[ 12)X2(12) - (I*2*[K2a1123).~(123) 

= A2~ * )  - <1"2"1Z~112)(12]L_ ]1').~(1') (88) 
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Here 

(l*2*lK2d 12) = (1"2"]zd3"4")[1 + P(12)] 

• (T(3*4*)IN(245))(451W~II1) (89) 

(l*2*lgza 1123) = <1"2"1Z2[ 1'2')(1'2'[L_ 1123) (90) 

In the two-body additive approximation we neglect -ta- The term Wff2 
describes isolated encounters, while the I'V~-I term involves a medium effect 
( "  oo). However, since we have been forced into a division of L into L0 ~ and 
- L ~  ~, the term K22 contains additional medium effects (and in particular 
another term of order po). To simplify these, we need to use the equilibrium 
hierarchy explicitly. 

We now discuss the contributions to the doublet kernel K22 according to 
powers of the density. In (T(12)IN(345)) there is a set of terms of order O0 a. 
These come from 

[1 + P(12)][1 + P(34) + P(35)] 8(3 - 1) 8(4 - 2)(Na(125)) 

Thus the contribution of this type of term to/(29. (without the premultiplying 
two-body inverse) is 

211 + P(3*4*)Jrk~a*)O~,*)pa(xa*x,*x2)(3*4.*] Ws 
+ pa(xa*x4*x4)ff4[(44*[ I'V~-II1) -t- (91) 

When we premultiply by (1 *2* IZ=I 3*4*) to find K==, the leading term arising 
from the A sector yields a contribution of order p0, i.e., of the same order as 
the Wg, term already isolated. Thus to order po in the doublet amplitude, just 
replace 3* by 1" and 4* by 2* and divide by 2p2(x~*x2*)~(,px*)~H(,p2*)~ Note 
that the analytic structure of the three terms differs. The first involves 
f ~2-4=(12) dp2. The second has a collision operator acting on the full -42 (13"), 
and the third has a collision operator acting on the function of one argument 
f f 4,1Az(13") dpl dx,. 

The terms of order po z are of two types. First, there is a contribution 
from the B part of the two-body inverse acting on the terms just discussed. 
Second, there is a part involving the [1 + P(12)][1 + P(34)+  P(35)] x 
8(3-1)(N~(1245)) part of (T(121N(345)). Explicit expressions can be found 
in Appendix D. We also note in the next section that the leading term in the 
two-body memory kernel in dressed particle approximation is of order 004 . 
Hence, when premultiplied by the two-body inverse it also yields a term of 
order 002 in the equation for the two-body amplitude. 

For the case of smooth potentials, Eq. (63) for the two-body amplitude 
A2(1"2") involves only the kernel (l*2*]Z2]i2)(i2]L[l'2'), after neglecting 
the three-particle amplitude. The matrix element (121L 11'2') may be deter- 
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mined from the equations in Appendix B, namely (B.13) and (B.14). The A 
part of the two-body inversion then yields 

O'2" Iz=l i~>A<i~-ILI i'~'>X=(i'~') 
1 + P(l*2*) 

= [L(I*I2* ) + L(2*II*)]X(l*2* ) + m(xpx2*) 

x Ra(xl*x2*24) 8xx* + KTSRa(xl*x2*x4) 8xa* @1" ~'X2(174) (92) 

This is similar to the result of Eq. (40), with the potential of mean field 
-s-T In p2(xlx2) replacing the bare interaction. The C part contributes 

< L'Z* IZ~112>c( lZILI 1'2'>A2(1'2') 

= - [1 + P(12)] a[U(xl*x~,*x~x~)p~ '(x~x~)] 2p~(xlx~)4,1,~-~ X(12) 
8xl 

U(xl*xjx~x~) 
Ra(x~x2x,)~l~4 ~ X(14) (93) - 4 8xl 

Finally the B contribution is 

<1"2" [Z2112>~< 12ILl 1'2'>,~2(1'2') 

= [t + P(1"2")]2 B(x l*  - x2*[[xl* - x l )  ( l l ,  ILI1,2,>X2(I,2,) (94) 
~ 4 , ( t , 1 " )  

6. D R E S S E D - P A R T I C L E  M E M O R Y  O P E R A T O R S  

In the dressed particle approximation we have 

~ ( t  ) = - P,L Q~e- Lot Q~L1P~ (95) 

For the case of hard spheres, L stands for L_, L1 for - L ~  ). 
There are a number of equivalent but distinct ways of expressing ~r 

We start with the matrix elements of the one-body memory operator 

( 1 " [ ~ 1 1 1 1 )  = - ( 1"  IL Q l e -  Lot alL1 I1> (96) 
since Q1Lol 1> = O. 

We write (cf. Appendix C) 

LIIN(1) = 1N(23)><231 W21[1> (97) 
Now e-Lot acting on an n-body function yields at most an n-body part. The 
subsequent action of Q1 rejects lower order parts. Using 

qg(23)> --Ig(2)g(3)> - 8 ( 2 -  3)qN(2)> 

e-L~ = IN(19><l'lf'12> (98) 

e- Lot lg(2)N(3)> = I N(2')N(3')><2'[ F 12><3'1 f ~[3> 
we find 

<~*IMllI~> -- -<l*lZ12'Y><2'lf~12><3'l~I3><23]W=dl> (99) 
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This "mixed" form involves the bare potential once through W21. The 
factor (1"1LI2'3') is expressed in terms of correlation functions for the case 
of smooth potentials (cf. Appendix B). It involves the one-body inverse, i.e., 
the direct correlation function. 

A second form of 3r is particularly useful for the case of hard spheres. 
Here the adjoint L+ + = - L _  and L_ has the property 

(L~W(I*)I = (1"[ W(2~i)[E*a*)(N(2*3*)[ (100) 

Hence 

<1" [/l~t~ ~ [1> = + <1" ] W(2~'12" 3"> <N(2"3")[ T(2'3')) 

• (2'11~12)(3'[~13)(231W~-~ll) (101) 

This involves two factors containing the bare potential. It also involves the 
one-body inverse in the factor (N(2*3*)IT(2'3')). 

Finally, there is a third, more complicated form, involving only correla- 
tion functions, for the case of smooth potentials. We write 

(l*l~q~ll) = -(l*[LI2*3*)(2*3*Iz214*5*)(a*5*Ie-Lo'I45) 
• (451z2123)(23[tll) (102) 

This involves the two-body inverse twice. Using the relation 

(4*5*le-Lo'145) = (T(4*5*)IT(7r (103) 

and the defining relation for the two-body inverse, we find 

= -�89 + <2"1~15)<3"1tl4)] 
• <451Z2123)<23[L[1) (104) 

For smooth potentials this involves no bare potentials and serves to 
show that the theory can always be written in renormalized form. The same 
thing is true of higher order memory functions. However, the price paid here 
is the introduction of the two-body inverse. These forms are unnecessarily 
complicated, and we use the first two forms in the calculation of memory 
functions. 

We now turn to the evaluation of the two-body memory function in the 
dressed particle approximation. The action of L on a two-body additive 
function produces a three-body and a two-body additive part. Q2 rejects 
the two-body part. We can write 

QzL IT(12)) = Q2[1 + P(12)]IN(2)N(3)N(Z))(37~ I W2111) (105) 

The action of e-Lot produces a part involving the product of three f' at the 
same time. Hence 

(1"2--1~r22112) = -(1"2"[L[3'4'5')[1 + P(12)](3'1~12)(4'[~13) 

x (5' 1~14)(341 wz~ll) (106) 
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The second form is 

(1"2"1~== [ 12) 

= [1 + P(1--2")][1 + P(12)](1--[ W~q3*4*)  

x (N(2*3*4*)T(3 '4 '5 ' ) ) (a ' lP[2)(4 'Jr I3) (5 ' IFI4) (341Ws (107) 

This involves the two-body inverse because of the presence of T(3'4'5'). 
It is clear that the n-body memory function in the dressed particle 

approximation can be written down immediately. 
The hard-sphere memory function 3 ~  can be put into an explicit form 

using the A, B, C separation of the four-point static correlation function 
according to the momentum. We have 

(1" [3~q~ 11). = 2( 1"*] W~)[ 2" 3*)(~(p2*)~(p3*)p2(x2*xa*) 

x (2*[p12)(3*lP13)(231 w~i l l )  (108) 

<L*l~qllk>~ - -  4<L*I wg~'12*3*)~Co=*)~(pa*)/(p=lx=' - x~)<2*lr13) 

o=(x=*x~*)p~(x;m') 2 x [p~(x=*x~*x,')- Oo ]< 3]WCdl) (109) 

where 

where 

? 

i(p=[x=' - x=) = j <2,lr,]2>q,(p;) @2' (110) 

<l*lM~d!>o = <12tu+ >~*x~*>~(x=*x~*x;xs') 
• i(pdx~' x~) (palxa xa)(23]W~-~ l l)  (111) 

( l*[H+lxz*xa*> = jj  <1,1W~+~lZ*3*)r162 dp2* dpa* (112) 

The A contribution is of order po 2 and that of B is of order 0o 3, apart from the 
density dependence contained in the propagators P. The C contributions are 
of  order 0o 4 and p05. In order to have the kernel acting on the singlet distribu- 
tion function [cf. Eq. (63)], we must postmultiply by (T(1)] T(5))-1F1(5). The 
delta-function contribution to the one-body inverse just supplies a multi- 
plicative factor (1/po)ff~(1)/r The direct correlation function contribution is 
purely spatial, viz., - C(21 - 2~)F~(3). Since f (23[ W2z[ 1) dp~ = 0, there is 
no contribution from the direct correlation term. Thus the A part of the 
memory operator contributes a term of order po, i.e., of the same order as 
the other terms in the singlet equation. 

A key point is of course the choice of the one-body operator Lo. Since 
it is one-body additive, it is fully defined by the matrix element (I ' [RI1)  in 
Eq. (64). The most attractive choice for R is the implicit form, Eq. (1). Thus 
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in the limit of large n, Mll evaluated in n-body approximation approaches 
the exact one-body memory function 

(I*[R[1) = <l*lZll> + (I*IMI~[1) (113) 

If M~I is evaluated in an approximation where the last memory function is 
neglected (n-body attractive approximation), the operator Lo never occurs. 
This approximation involves only the matrix elements of the full Liouville 
operator and decomposition is called for. We then have an explicit form for 
<I*IRI 1) and thus for the propagator ( 1' [ P t 1). 

On the other hand, i fR is defined as above, using the unknown exact M~,  
we have a series of exact reformulations of the problem. With Go = (S + Lo) -1 
and Eqs. (12) and (13), i.e., the continued fraction form, together with Eq. (24), 
namely 

1 GoQ,LP,~ 
ffI,~n = -P,~LQ.~ 1 + Goa,~L1an 

an approximation to )Q,, leads to a self-consistent evaluation of 3Qll. 
A scheme involving, for example, the determination of (I*[R[1) from 

1 
PxLoPI ~- P~LP~ - P~LQ~ ~ QtLP~ (114) 

leads to an improvement over the simple one-body dressed particle theory 
since Lo will have collisional damping properties. However, even with the 
self-consistent evaluation of R, not enough attention is paid to binary colli- 
sions. Thus to make the smooth potential case approach the hard-sphere 
results, )Q~I must be evaluated in at least two-body additive approximation 
and the resulting/~ used to evaluate -~22 in dressed particle approximation. 
This leads to an improved/~r The self-consistent approach appears to be 
impracticable, although it may play a role in general arguments. 

This line of argument leads to the suggestion that for the hard-sphere 
case the two-body memory function should also be evaluated with an Lo 
that is determined by an )Q~ evaluated in the two-body additive approxima- 
tion. 

Finally, we discuss the relationship between (1 [f'12> - (lle-L~ and 
(11~12> = (T(1)IT(i '))-~(i 'ILo[2). The argument is the same as in our 
dressed particle paper. ~ We have the differential equation 

df'/dt = -LoP( t )  with f~(0)= 1 (115) 

The Laplace transform is 

(S + Lo)F(S) = 1 (116) 

For smooth potentials, with Lo the modified Vlasov operator, the equation is 
exactly soluble. For hard spheres when Lo is the LPS operator, one needs to 
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know the Green's function for the linearized Boltzmann-Enskog equation. 
The additional mean field term in Lo has a separable character, so that, as 
shown by LPS (v and Sykes, ~9) the Green's function for Lo can be written 
explicitly in terms of the Green's function for the Boltzmann-Enskog equa- 
tion. In more sophisticated choices of Lo the only simplifying features are 
translational invariance and the requirement that Lo have suitable hydro- 
dynamic consequences. 

7. S U M M A R Y  A N D  C O N C L U S I O N S  

We would like to stress the extreme simplicity of the theory from the 
methodological point of view. Classical many-body theory for processes 
occurring near absolute equilibrium is analyzed by constructing a symmetric 
function basis for phase space. The key point is that orthogonality of the 
functions is defined with respect to the exact Gibbs equilibrium distribution. 
The construction is made by a Gram Schmidt process, based on the notion of 
n-body additive functions as the way to choose successive functions. Orthog- 
onalization is explicitly achieved for functions in different spaces. No attempt 
is made to make the functions belonging to a given space P, orthogonal to 
each other. One then sets up the amplitude representation of the Liouville 
equation. The solution of these equations is equivalent to a diagonalization 
problem, which in fact would yield an orthogonal, complete basis for P, .  For 
example at the one-body additive level, Zwanzig (15~ analyzed the modified 
Vlasov equation in terms of van Kampen eigenfunctions. However, in 
practice, it is not necessary to do this explicitly. The inverses in the projection 
operators maintain consistency. 

This is all completely in accord with the most standard procedures of 
mathematical physics, and the theory then "plays itself." At first sight it is 
disturbing that the equations appear unavoidably complicated because of the 
appearance of high-order static correlation functions, even after simplifica- 
tions have been effected by using the equilibrium hierarchy. The main reason 
for this is that the theory is accurate at short times. One uses precise, micro- 
scopic initial conditions needed to analyze time-dependent correlation 
functions. Then, already at t = 0, all of the higher order normal distribution 
functions and ordinary cumulants are nonzero. While one can simplify 
equations by neglecting these cumulants (within the context of some parameter 
expansion), the results are limited by the t = 0 inaccuracy. 

We have set down the theory in terms of integrodifferential equations, 
retaining all terms. In the solution of problems, for example, in the low- 
density limit, it is tempting to neglect most of the terms. Caution is required, 
however, for there are terms of different analytic structure. They play different 
roles in determining the behavior of phenomena in different time, space, or 
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momentum domains. A safer procedure is to retain the leading terms for each 
distinct analytic structure. We have adopted the traditional viewpoint toward 
the computation of observable quantities. One first sets up (perhaps very 
complicated) integrodifferential equations governing the quantities, which 
may include other quantities not of immediate interest. Then one focuses on 
suitable approximation schemes for solving the equations. This is of course 
the situation with the ordinary Boltzmann equation. The equations are 
equivalent to the summation of classes of diagrams in methods that aim 
directly at the computation of the observable quantities. 

It seems that for low to moderate densities the three-body additive 
approximation contains almost all known results regarding short-time, 
hydrodynamic and long-time behavior. Naturally, to the extent that, for 
example, "irreducible" three- or four-body collision sequences (cf. Sengers ~18~) 
are important, one must keep amplitudes .~, of requisite order. The medium 
effects that are taken into account in the present treatment can at best 
diminish, without ever annulling the effects of such collision sequences. 

The treatment of the hard-sphere problem using pseudo-Liouville ~19~ 
operators has enabled us to see clearly into the structure of the theory, since 
the two-body additive theory is on the same level as the three-body additive 
theory for smooth potentials. The use of a one-body additive operator Lo 
yields an alternative, formally exact expression for the residual memory 
function associated with the size of the cluster at which one stops. To treat 
certain long-range screening and tong-time tail effects, a dressed particle type 
of approximation avoids going to the next order cluster. Fortunately the 
expressions for the dressed particle memory functions can be written down 
explicitly. The hard-sphere case shows, already at the one-body additive level, 
that a satisfactory L0 should have, for example, hydrodynamic eigenfunctions 
for long wavelength. This fits in with both the general theory of Green's 
function and with specific kinetic theory analysis of critical phenomena ~2~ 
and of long time tails3 TM 

In the general theory of Green's functions, ~12~ other, more sophisticated 
but more complicated methods of treating the "last" memory operator have 
been discussed. The dressed particle point of view emphasizes interaction of 
each member of a cluster with the medium via fluctuations. With attractive 
forces, members of a cluster might form bound states which then interact 
with fluctuations. Mazenko has discussed some of these decompositions by 
analyzing connected and disconnected parts of the residual memory operator. 
However, it does not seem to us that the use of ordinary or Kubo cumulants 
to make this distinction is in the spirit of the general formulation of the theory. 

To a large extent, differences between current theories are more a matter 
of language and formalism than of point of view. Thus (aided by Boley's 
work) the author believes that the theory is closely related to that of Mazenko, 
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who has gone fur ther  in a number  of  directions. Likewise, recent work  by 
D o r f m a n  and Cohen  (z~) and Lebowitz  and R6sibois ~2~) (which has appeared  
too recently for  us to study and evaluate here) may  " d o  the same job . "  We 
feel tha t  an advantage of  this present  fo rmula t ion  is its e lementary  c h a r a c t e r - -  
in fact, its s imple-minded character .  Given the few initial ideas, the rest o f  the 
steps are obvious.  

A P P E N D I X  A. S T A T I C  C O R R E L A T I O N  F U N C T I O N S  

(3N(1)I3N(2))  = [p2(xlx2)  - po2]r162 + 3(1 - 2)p0r (A.1) 

+ [8(3 - 1) + 6(3 - 2)]cf~r (A.2) 

(8N(123)13N(4)) = [p + (x~x2x3x4)  - pop3(x~x2xa)]~2~ac~4  

+ [8(4 - ~) + 8(4 - 2) + 8(4 - 3)]r162162 
(A.3) 

(6N(12)ISN(34))  = [p + ( x , x z x a x , )  - p z ( x l x ~ ) p ~ ( x z x , ) ] ~ j ~ , ~ ,  

+ [1 + P(34)][8(3 - 1) + 3(3 - 2)](~zc~j~,pa(x~xzx,)  
(A.4)  

(SN(123)  J3N(45))  = [ps(x~x2xzx4xs) - pa(x~x2xz)p2(x4xs)]r162162 

+ [1 + P(45)][8(4 - 1) + 8(4 - 2) + 8(4 - 3)] 

• (~r162162 + [1 + P(45)1 

x [3(4 - 1)8(5  - 2)  + 8 ( 4 -  1)8(5  - 3) 

+ 8(4 - 2)8(5 - 3)]r162162 

( T ( 1 2 )  IT(34) )  = ~lCzdpa~46r 

+ [1 + P(34)][1 + P(12)]pa(XlXzXs) 

• [-p2(x~x2)p2(x3x,)/po]q~g~2q~z 8 ( 4 -  1) 

Here  

(A.5)  

+ (~l(~2p2(XlXz)[8(3 - 1)~(4 - 2) + 8(3 - 2)8(4 - 1)] 
(A.6) 

~e(xlx2x3x~) = p~(xlx2x3x~) - p2(xlx~)p2(mx,) 

- K ( x s x 4 2 a ) [ p a ( x l x 2 2 s )  - pop2(xlx2)]  

- [K(x .x~xd  + K(xzX4X~)]p~(x~x~) 

- [m(xzx4)/po][1 + P(34)][m(x~x~x,) - pom(XlX2)] 
(A.7) 
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and 

I ,:(xlx~xs) = [p3(xlx~x3)/t,o] - t, d x l x ~ )  

- f m(x~x~x~)C(x~ - x3) dx ,  

- o d x ~ x ~ ) [ c ( x ,  - x 3  + c ( x ~  - x~)] 

+ m ( x ~ x ~ ) o o f  C ( x ,  - m )  ax ,  (a.8) 

(T(12)IN(345))  = [1 + P(1211[1 + P(35) + P(45)1 

x 8(3 - 1)8(4 - 2)(Na(125)) 

+ I1 + P02)][1 + e(34) + e(35)1 

x 3 ( 3 -  1)(N,(1245))  

+ [(N5(12345)) - (N2(12))(Na(345))]  

- [A(123) + A(124) + A(125)](Nd345)) 

- A(126)[(N4(3456)) - (N(6) ) (Na(345)) ]  (A.9) 

A more  explicit form,  ordered in powers  of  the density, is 

(T(12)IN(345))  -- Oo311 + e(12)][1 + P(35) + e(45)]  

x ~ ( 3 -  1 ) 3 ( 4 -  2)(N3(125))/po 3 

+ Oo411 + P(12)][1 + P(34) + P(35)1 

x 3 ( 3 -  1)(N,(1245))/po ~ 

- po*[1 + e(34) + P(35)][1 + e(12)] 

x [3(3 - 1)/41](N2(12))(Na(345))/Oo ~ 

+ 4~4~4~4~4~(~ + ~ )  (A.IO) 

Here  

~ d x ~ x ~ x , x , x ~ )  = pdx~x~x , x , x~ )  - odx~x~)m(x~x~x~)  

- m ( x ~ x ~ x ~ ) [ K ( x ~ m x , )  + K(x~x~x~) + K(x~x~m)]  

- M(x~x~) /M[p~(x~x~x~xs)  

+ o~(x~x~x~x~) - 2oom(mx ,x~ ) ]  

~ ( x ~ x ~ x ~ x , x ~ )  = - K ( x ~ x ~ o ) [ o , ( ~ m x ~ x ~ )  - oopdmx ,x~) ]  

and we set 

(A.11) 

(A.12) 

~(x~x~x~x~x~)  = ~ + ~ (A.13) 
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A P P E N D I X  B. M A T R I X  ELEMENTS OF L FOR S M O O T H  
POTENTIALS 

We use the basic formula 

(A(r)LB(P))  = ~T({A, B ) ~ )  

where 

( B . 0  

L(ll2) p~ ,9 ~ In p2(x~x~) ~ (B.2) 
= m ax'---~ + ,~T ax~ ep~ 

L(1123) p~ a O In Oa(x~x2x3) 8 (B.3) 
= m ~x-S + , , r  ~xl ~p-S 

etc., and note that L(112)(N(12)) = 0, L(1123)(N(123)) = 0. We then have 
the tabulation 

0B(1) (B.4) J ~  =- A(1)(N(1)ILIN(2))B(2)  = ooA(1)r mp~ 

S21 =- C(12)(N(lZ)ILIN(3))B(3)  = 2C(12)(N(lZ))L(112)B(1) (B.5) 

J12 = B(1)<N(1)ILIN(23))C(23) = --2B(O<g(12)>ZOI2)C(12)  (B.6) 

Jo~ - C02)<N(12) IL IN(34) )  D(34) 

= 4C(12)(N(123))L( l123)D(13)  

+ 2C(12)(N(12))[L( l12 ) + L(2 I1)]D(12) (B.7) 

J2a = C(12)(N(12)ILIN(345))E(345)  

= 3C(12)(N,(234))[1 + P(12)]L(lI234)E(134) 

+ 6C(12)(N4(123))[1 + P(12)]L(lI23)E(123) (B.8) 

The theory requires the matrix elements of L with the basis functions, 

.h~ - A(1)(T(1)ILIT(2))B(2)  = Jl l  (B.9) 

.i2~ - C(12)(T(12)ILIT(3))B(3)  

Op2(xlx2) . _  . . . .  OB(1) 
= 2C(12) - ~  9kPDgtP2) 8pl 

OB(4) (B. 10) 
- co2)r162 ~ ax, 

~(eAeB oAoB) 
In order to avoid errors arising from the singular nature of the phase-space 
functions, we use real, smooth, symmetric support functions on the left- and 
right-hand sides of matrix elements. We also use the notation 
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where 

S(xlx2x~) = pa(xlxzx4) - poZf pz(xlx2xa)C(xa - x~) dxa 

- ooe~(x~x~)[C(x~ - x~) + C(x~  - x~)] 

j ~  - < B ( 3 ) < T ( 3 ) I L I T ( 1 2 ) > C ( 1 2 )  = - j 2 ~  

j22 = C(12)<T(12)ILIT(34)> D(34) 
= C(12)[(N(12)>[L(112) + L(2I 1)]D(12) 

+ 4C(12)~tdpgyfi~[Ra(xlx2x,)~ ~-~+tcT  ~3Ra(x~x2x,)oxt ; x ] D ( 1 4 )  

with 

(B.11) 

(B. 12) 

(B.13) 

(B.14) 

A P P E N D I X  C. M A T R I X  ELEMENTS OF THE PSEUDO-  
LIOUVILLE OPERATORS 

We use the formulation of Refs. 5 and 19. The latter paper gives the 
derivation of the one-body additive equation of LPS ~7> and Mazenko ~8) in a 
form close to the notation of  this paper. The pseudo-Liouville operators are 

L~ = Lo ~ +_ 2 ~, ~ ( i j )  = Lo ~ +_ L~ > (C.1) 

~-~(ij) = (1/m)lp,s.~l,slO(-y-p,j.q,j)8(lq,jl - ,r)(b,:- 1) (C.2) 

Here ~ is diameter of the hard spheres, O(x) is the step function, O(x) =- 0 
for x < 0 and O(x) = 1 for x > 0. Also, 

P,J = P, - Pi, q,J -- q~y/lq,;I (C.3) 

The exchange operator b~ operates according to the rule 

b,,f(p,,..., p,, q~ ..... Pi, qJ .... , qN) = f(,Pl ..... p F, q,, pf, . . . ,  qj ..... qN) (C.4) 

where the final momenta p~, pjr obey 

p F = p~  _ (p~-'4,j)q~J, p F = pj + (p,j.~,j)q~ (c.5) 

The evolution operator is e-tL+ for t > 0 and e -tr'- for t < 0. With inner 
products defined with a Gibbs weight factor r  we have 

(AIB) = f ~A*B dP 

<AIL+IB> = -<L_AIB>, <AlL_B> = --<L+AIB> ((2.6) 
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in contrast to the smooth potential case, where the same anti-Hermitian 
operator L occurs in both sides. It should be noted that even in the smooth 
potential case the free streaming operator Lo ~ is not anti-Hermitian, since it 
does not have the Gibbs function as an eigenfunction with eigenvalue zero. 
The above pseudo operators are to be used in time-dependent correlation 
functions, where they operate on functions to the right. The multiplication by 
4~ is put to the left and then one integrates over phase space. Let 

~ (34 )  = (1/m)]pa4"Ra4] 0(g Pa4"~a4) 8(Ix~l - ~) (C.7)  

<11 v [ 3 4 )  = �89 + P(34)]  8(xa - x~)[8(pa - pa , 'Ra4 ia4  - P~) - 8(pa - p , ) ]  
(C.8)  

and 

<34] W~I 1) = ~(34)(11/134) 

Then 

(C.9) 

L~'N(1) = N2(3a,)(3a, I Wd[ 1) 

L~'N2(12) = [1 + P(12)]Na(2ga)(3a,] wd~il 1) + N2(34)(3a,[ W~112) 

Here 

(341W~] 12) = [1 + P(12)]a~(34) 8(Xa - x,) 8(xa - x=) 

We encounter 

x [8(p~ - p ~ 8 ~  - p O  a ( p ,  + p ~ j : ~  - p=) 

- 8(p~ - p O  a(p~ - p=)]  

This is evaluated by going to final momenta and using 

( c .  ~ o) 

( c .~1 )  

We have 

P,4(P0 <xax4ln• I1> = • ~ [a( Ix l , I  - ~) a(x~ - x ~ ) ~ .  

+ ~(1x181 - - )  a (x~  - x l ) ~ d  

- +_ P~'@O<mx,  lU+lx~) 
m 

(C.12) 

( c . 13 )  

( c . 14 )  
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The matrix elements are 

(21Lo~ Pl aS(1 - 2) P~q~lr apz(xlx2) 
= ' ~ 1 7 6 1 6 2  : ~ m axl 

(c.15) 

<2IL~'[ 1> = _ p1r162 (m(xlx=x4). 8(Ixl~l - ~ ) ~  dx~ 
m d 

+ 2r162 W~I 1) (C. 16) 

Using the equilibrium relations, 

(IIL~12) = Oor pl 08(1 - 2) p2"~12 

+ 2p2(a)q~lr162 I Will2) (C. 17) 

We also have 

a<llZd3> + p~(r162 pa.~l~ a(Ixld - ~) ( l lL_ I~><~lzd3> = po -~ r axl po m 

2 p2(a)r162 <lZq w~13> 1 Po ~ (c.18) 

The Boltzmann-Enskog operator M involves a different combination of 0 
functions than is contained in 14122. We introduce 

p.,.~1~ r162 8(Ix1~1 - ~) (C.19) 
m 

Then 

and 

PP 
O1~12> = j j  a_(14)r162 - x2) 8(pl - p14~1~:1r Pz) 

+ 8(x~ - x2) 3(.p4 + P ~ , : ~ I ~  - Pz] d~, dx, 

+ 8(x, - x~) a(p~ - p~)] dx~ dp~ (c.2o) 

P1r 83(1 - 2) PlO2(~) r162 a(Ixld - ~) 
( i lL-12)  = po ~ -  8xl + m 

- p2(a)( l l~12> ( c . 2 0  
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A P P E N D I X  D. T W O - B O D Y  COLLISION KERNEL FOR H A R D  
SPHERES 

The kernel operating on the two-body amplitude -~2 consists of the two 
body inverse multiplied by the quantity 

[1 + P(l'2')](T(3*4,*)[N3(l'4'5'))(4'5' I Wy112')_42(1'2') 

We write down the contributions to this quantity here. There are three parts. 
The term of order po 3 is 

2~b(p3*)~b(p4*)[1 + P(3*4*)][p3(x3*x4*~2)(3*4* I Wyl I T')ff(/~2'),42(T'2') 

+ pa(x3*x~*~4')[,~(ff~')(g'4* 1 my~li')~2(i'3*) 

+ 4(d~')(4'4"1W~113")-42(i'3")] (D. 1) 

The term of order po 4 contains the spatial kernels 

<x3*lx31x;) = p3(x~*Jz~'xs')<x,'x~'lU+ Ix;)  

<x~*x~*lx, lx;> = p,(x~*x~*~;~;)<~,'~;iu+ Ix;> (9.2) 

where 

(D.3) 

It is 

2r162 + P(3*4*)]{[(m*x,*la, lx') 

r X~(3*~') p~(x**x,*) <x~*la~l)z'>]p; - - ~  
Po 

[[ 1 + e(i'~')]t,,(m*x,*e;~d)] 
+ m(~*x,*) m(x~*, Jz~', Jz~') [ r w~l~')r 

J Po 
(D.4) 

Finally, the terms of order po 5 and po 6 are 

~(p~*)~(pg)[1 + P(T'~')]~(x~*x~*~h'x;~zd)(Jz;~z;I u+ Ix~') 

? ?  
~(fil ) ( /53/m)~2 )Az( ) (D.5) ) J  . . . .  - '  - i '~' 

Here dr = *~5 + ~6 is written in the appendix dealing with static correlation 
functions. 
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APPENDIX E. MODIF IED  C U M U L A N T S  

Our starting point for the hard-sphere case is the Liouville equation 

[(~/at) + Lo ~ - �89 ~ T(ij)IOPN = 0 

Here 

i .e . ,  

T(V) =3-_ (q )  + Q(U), 

(E.O 

T(ij) = ~(Iq,] - ~ ) ~  [0~,.fi,y)b, - 0 ( - p , . 4 , ) ]  (E.3) 

We also note that because of the discontinuous functions in q), 

Lo~ = [ ~ Q(iy)O (E.4) 

From this equation, by multiplying by N(1), N(12),..., we find the equilibrium 
hierarchy 

Lo~ = Q(12)<N(12)> 

[Lo~ + Lo~ = [Q(I~) + Q(2~)]<N(12~)> (E.5) 

For the nonequilibrium case we find the hierarchy used by Ernst and 
Dorfman: 

[(~/~t) + Lo~ = T(1~)P~(12) 

[(~/Ot) + Lo~ + Lo~ - T(12)lP2(12) = [T(13) + T(23)lP3(123) (E.6) 

Note that our Fn are po" times the ones used by the cited authors. 
The modified cumulants A are simply the amplitudes multiplied by 

correlation functions. 
Thus the quantities in brackets in Eq. (74) are cumulants, 

/X~(1) - Pl(1) = <T(1)IT(~)>X~(~ ) = <T(1)IP~> 

A2(12) = <T(12)IT(370>X2(3~) = <T(12)IP~ 

= P2(12) - A(123)f~(3) (E.7) 

A3(123) = <T(123)iP~> --- <T(123)IT(Z~3~)>Xa(Z~3~) 

= Fa(123) - A(1231ZL5)/~2(Z~3) - A(1231Z~)P~(Zt) 

We call the An modified cumulants. To justify the name, note that 

3x2(12) = F2(12) - K(x~x2~3)~l~2P~(3) - [p2(x~x2)/Po][~fi'a(2) + $2P~(1)1 
(E.8) 

^ 

Q(ij) = P " q "  8(lq~jl - or) (E.2) 
m 
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Asymptotically, there is agreement with the usual time-dependent linearized 
cumulant D2(12), 

D2(12) - F2(12) - po[r + q~2Fl(1)] (E.9) 

The equations for A, may be formed by taking combinations of Eqs. (E.6). 
Thus 

(O/~t)~(1) + Lo~ - T(12)A(123)/~l(3) = T(12)/~2(1~.) (E.10) 

[(~/0t) + Lo~ + Lo~ - T(12)]3,2(12) + A(lZ3)T(3Z0A2(l~ ) 

- T(13) + T(Z3)l[A(12317~3)/~z(43) + z~3(123)1 

= - [Lo~ + Lo~ - T(12)]A(123)s + A(123)Lo0)?,10) 

+ [T(13) + T(23)]A(123]74)~(FI) - A(123)T(37~)A(343)R~(3) 
(E.11) 

Considerable simplification may be achieved in these equations, which 
are an alternative form of the theory. The work needed is similar to what was 
outlined in the body of the paper. One technical difference lies in the position 
of the inverses, which are here embedded in the A(123), etc. The second 
difference lies in the different combinations of 0 functions in T(/j) and in 
L~ ). The T combination is more satisfactory since it isolates directly the 
Boltzmann-Enskog operator. Thus in the one-body additive approximation 
the key terms are 

T(12)A(123)~,~(3) = T(12)d?I~2K(x~x2Xa)/~(3) 

+ T(12)[p2(cr)/po][$2/~(1) + r (E.12) 

The first term, involving K(xlx2xa), contains the LPS mean field term, while 
the second term is the Boltzmann-Enskog collision term. 

']'he time correlation point of view is convenient in general arguments 
involving memory functions in Section 2, as well as in the evaluation of 
memory functions in the dressed particle and related approximations in 
Section 5. To establish the connection, we must move �9 in Eq. (E.1) to the 
left of the operators. We have 

@[(~/0t) + Lo ~ + �89 ~ Q(/j) - ~ T(ij)]Pw = 0 (E.13) 

o r  

Since 

r  + Lo o - �89 ~ J--(ij)]r = o 
f r  

(E. 14) 

Lo ~ - ~ ~ ~-_ (/j)  = Lo ~ - L'_" = L _  

we see that L_ is the pseudo-Liouville operator needed and the starting point 
for the time correlation point of view is 

[(~lOt) + L_]#N = 0 (E.15) 
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